Angular orientation of nanorods using nanophotonic tweezers.

نویسندگان

  • Pilgyu Kang
  • Xavier Serey
  • Yih-Fan Chen
  • David Erickson
چکیده

Near-field optical techniques have enabled the trapping, transport, and handling of nanoscopic materials much smaller than what can be manipulated with traditional optical tweezers. Here we extend the scope of what is possible by demonstrating angular orientation and rotational control of both biological and nonbiological nanoscale rods using photonic crystal nanotweezers. In our experiments, single microtubules (diameter 25 nm, length 8 μm) and multiwalled carbon nanotubes (outer diameter 110-170 nm, length 5 μm) are rotated by the optical torque resulting from their interaction with the evanescent field emanating from these devices. An angular trap stiffness of κ = 92.8 pN·nm/rad(2)·mW is demonstrated for the microtubules, and a torsional spring constant of 22.8 pN·nm/rad(2)·mW is measured for the nanotubes. We expect that this new capability will facilitate the development of high precision nanoassembly schemes and biophysical studies of bending strains of biomolecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices

Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, opt...

متن کامل

Determining the 3D orientation of optically trapped upconverting nanorods by in situ single-particle polarized spectroscopy.

An approach to unequivocally determine the three-dimensional orientation of optically manipulated NaYF4:Er(3+),Yb(3+) upconverting nanorods (UCNRs) is demonstrated. Long-term immobilization of individual UCNRs inside single and multiple resonant optical traps allow for stable single UCNR spectroscopy studies. Based on the strong polarization dependent upconverted luminescence of UCNRs it is pos...

متن کامل

Integratable quarter-wave plates enable one-way angular momentum conversion

Nanophotonic waveguides are the building blocks of integrated photonics. To date, while quarter-wave plates (QWPs) are widely used as common components for a wide range of applications in free space, there are almost no reports of Integratable QWPs being able to manipulate the angular momentum (AM) of photons inside nanophotonic waveguides. Here, we demonstrate two kinds of Integratable QWPs re...

متن کامل

Built-in surface electric field, piezoelectricity and photoelastic effect in GaN nanorods for nanophotonic devices.

Novel behaviors arising from the coupling between the built-in surface electric field, piezoelectricity, electron-hole pairs and external light beam were observed in GaN nanorods. An increase in the optical excitation density resulted in a blueshift in the photoluminescence spectra and a redshift in the frequency of the GaN A(1)(LO) phonon. The underlying mechanism was attributed to the screeni...

متن کامل

An illustration of photocatalytic properties of ZnO nanorods array films

ZnO nanorods array films were coated on a glass template through a two-step chemical process. First, a sol-gel spin coating method was used to produce a ZnO seed layer and after that, the ZnO nanorods arrays were grown on it through a low temperature aqueous method. Synthesized films were studied by scanning electron microscope (SEM) and X-ray diffractometer (XRD). X-ray diffraction results sho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 12 12  شماره 

صفحات  -

تاریخ انتشار 2012